Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Frontiers in Environmental Science ; 10, 2022.
Article in English | Web of Science | ID: covidwho-2043437

ABSTRACT

The high level of aerosol pollution in South Asia has a measurable impact on clouds, radiation, and precipitation. Here, exploring multiple observational data sets and simulations of the state-of-the-art ECHAM6-HAMMOZ chemistry-climate model, we report that the reduction in anthropogenic emissions during the COVID-19 lockdown period has enhanced precipitation by 5-25% over India. This precipitation enhancement is the result of the combined effect of an enhancement in cloud cover, a reduction in aerosol induced cloud invigoration and dynamical changes. We observed that the increase in cloud cover was associated with a reduction in cloud base height and an increase in the effective radius of cloud particles which led to an increase in cloud water content. In response to sudden emission reduction, an anomalous northward moisture transport was observed adding convection and precipitation over the Indian region. Importantly, we show that there is an advantage of anthropogenic pollution reduction for water availability in addition to benefits of air quality, human health, and crop yield.

2.
Sci Total Environ ; 739: 140101, 2020 Oct 15.
Article in English | MEDLINE | ID: covidwho-595875

ABSTRACT

The pandemic outbreak of the novel coronavirus epidemic disease (COVID-19) is spreading like a diffusion-reaction in the world and almost 208 countries and territories are being affected around the globe. It became a sever health and socio-economic problem, while the world has no vaccine to combat this virus. This research aims to analyze the connection between the fast spread of COVID-19 and regional climate parameters over a global scale. In this research, we collected the data of COVID-19 cases from the time of 1st reported case to the 5th June 2020 in different affected countries and regional climatic parameters data from January 2020 to 5th June 2020. It was found that most of the countries located in the relatively lower temperature region show a rapid increase in the COVID-19 cases than the countries locating in the warmer climatic regions despite their better socio-economic conditions. A correlation between metrological parameters and COVID-19 cases was observed. Average daylight hours are correlated to total the COVID-19 cases with a coefficient of determination of 0.42, while average high-temperature shows a correlation of 0.59 and 0.42 with total COVID-19 cases and death cases respectively. The finding of the study will help international health organizations and local administrations to combat and well manage the spread of COVID-19.


Subject(s)
Betacoronavirus , Climate , Coronavirus Infections/epidemiology , Pandemics , Pneumonia, Viral , COVID-19 , Humans , SARS-CoV-2 , Socioeconomic Factors
SELECTION OF CITATIONS
SEARCH DETAIL